skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tiozzo, Giulio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by an observation of Dehornoy, we study the roots of Alexander polynomials of knots and links that are closures of positive 3-strand braids. We give experimental data on random such braids and find that the roots exhibit marked patterns, which we refine into precise conjectures. We then prove several results along those lines, for example that generically at least 69% of the roots are on the unit circle, which appears to be sharp. We also show there is a large root-free region near the origin. We further study the equidistribution properties of such roots by introducing a Lyapunov exponent of the Burau representation of random positive braids, and a corresponding bifurcation measure. In the spirit of Deroin and Dujardin, we conjecture that the bifurcation measure gives the limiting measure for such roots, and prove this on a region with positive limiting mass. We use tools including work of Gambaudo and Ghys on the signature function of links, for which we prove a central limit theorem. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We prove that infinite orbits of Zariski dense hyperbolic groups equidistribute in homogeneous spaces, in the sense that the family of measures obtained by averaging along spheres in the Cayley graph converges to Haar measure. 
    more » « less
  3. We establish central limit theorems for an action of a group $$G$$ on a hyperbolic space $$X$$ with respect to the counting measure on a Cayley graph of $$G$$ . Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds. 
    more » « less
  4. Abstract We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups. 
    more » « less
  5. null (Ed.)